The Role of Elastic Stresses on Leaf Venation Morphogenesis

نویسندگان

  • María F. Laguna
  • Steffen Bohn
  • Eduardo A. Jagla
چکیده

We explore the possible role of elastic mismatch between epidermis and mesophyll as a driving force for the development of leaf venation. The current prevalent 'canalization' hypothesis for the formation of veins claims that the transport of the hormone auxin out of the leaves triggers cell differentiation to form veins. Although there is evidence that auxin plays a fundamental role in vein formation, the simple canalization mechanism may not be enough to explain some features observed in the vascular system of leaves, in particular, the abundance of vein loops. We present a model based on the existence of mechanical instabilities that leads very naturally to hierarchical patterns with a large number of closed loops. When applied to the structure of high-order veins, the numerical results show the same qualitative features as actual venation patterns and, furthermore, have the same statistical properties. We argue that the agreement between actual and simulated patterns provides strong evidence for the role of mechanical effects on venation development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Modeling of an Innovative Bipolar Plate Design Based on the Leaf Venation Patterns for PEM Fuel Cells

Flow channel design on bipolar plates has a direct effect on Proton Exchange Membrane (PEM) fuel cell performance. It has been found out that the flow field design has a deterministic role on the mass transport and water management, and therefore on the achieved power in PEM Fuel cells. This study concentrates on improvements in the fuel cell performance through optimization of channel dimensio...

متن کامل

ar X iv : 0 90 7 . 27 89 v 1 [ co nd - m at . s of t ] 1 6 Ju l 2 00 9 A model for hierarchical patterns under mechanical stresses

We present a model for mechanically-induced pattern formation in growing biological tissues and discuss its application to the development of leaf venation networks. Drawing an analogy with phase transitions in solids, we use a phase field method to describe the transition between two states of the tissue, e.g. the differentiation of leaf veins, and consider a layered system where mechanical st...

متن کامل

Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.

The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) recep...

متن کامل

The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.

To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positional...

متن کامل

Interactions between venation pattern formation genes in Arabidopsis thaliana

*Address correspondence to: J. L. Micol, División de Genética and nstituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain. e-mail: [email protected] ABSTRACT Aiming to contribute to the understanding of the genetic mechanisms underlying venation pattern formation in the vegetative leaves of Arabidopsis thaliana, we have previously analyzed the natural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Computational Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2008